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J. Phys: condcns. Matter 4 (1992) 667678. Printed in the UK 

A density functional model for the surface properties of liquid 
4He 

A Guirao, M Centelles, M Barranco, M Pi, A Polls and X V i a s  
D e p a w e n t  d'&XNCtUra i Constituents de la Mattria, Facultat de Fisica, 
Universitat de Barcelona, Diagonal 647, E48028 Bamlona, Spain 

Rece'hd 25 July 1991 

Abst-acL A density functional approach is proposed to study lhe 'He liquid-gas inlerface. 
"he fre energy density, which depends on lhe panicle density and temperature, bas 
been adjusted lo repmduce the liquid density and the vapour prasure along the liquid- 
gas coexistence line, as well as the zem-temperature surface tension. After achieving a 
fairly gocd description of the phase transilion. the calculaled surface tension agrees well 
with the experimental mulls. The calculated density profile is used lo discuss a recent 
experimental determination of the surface thickness. 

1. Introduction 

The surface tension (U) of liquid 4He was first measured in 1925 [I]. However, there 
still are many open theoretical and experimental problems in the description of the 
liquid-gas interface 121. I t  is only recently that the surface tension of liquid 4He has 
been systematically measured from the critical temperature T, down to a few tenths 
of kelvin [3,4]. Apart from the surface tension, the experimental information on the 
liquid-gas interface is very scarce; only a few indirect determinations of the surface 
thickness (t) are available [5,6]. The analysis of the most recent experiments, which 
are based on ellipsometric measurements, [6] requires the knowledge of the density 
profile p(z).  As there is not enough experimental information on p(z ) ,  it is necesary 
to guess a density profile, which in [6] was chosen to he a simple Fermi function. 

At zero temperature (T), there exist in the recent literature different theoretical 
methods to study the free surface of liquid 4He. Basically, they fall into one of 
two types, namely microscopic [7-91 and phenomenological [lo, 111 models. In the 
first type, the extensions of the variational Monte Carlo and Green's function Monte 
Carlo methods to inhomogeneous systems 191 predict a surface tension in very good 
agreement with the experimental results. The second type of calculations is based 
mainly on density functional theories which have received a renewed interest in their 
application to quantum liquids [10-14] and will constitute the framework of the 
present investigation. 

The situation at finite temperature is more complicated and to our knowledge 
there is no microscopic calculation of the liquid-gas interface. In fact, the very few 
microscopic attempts to describe *He at T # 0 have been concentrated in the bulk 
properties [15,16]. It is precisely in these situations where a more phenomenological 
approach, such as a density functional theory, can be useful to analyze the experi- 
mental results. 
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668 A Guuao et a1 

Recently, simple energy density functionals have been used with some success to 
study the 3He liquid-gas interface at non-zero temperatures 114,171. These function- 
als were largely inspired on the density functional proposed in [lo] to study liquid 
helium at T = 0. In this reference, Stringad and lfeiner achieved a good description 
of the T = 0 K liquid equation of state and of the properties of the free surface, once 
the few parameters entering the functional definition had been chosen to reproduce 
some relevant, experimentally known quantities. 

p Ip/cm') 1 In) 
Pispm 1. 4He T = 0 K isotherm. The full cinles 
arc h e  qmimcntal values from [ZO). 

Figure 2. Uquid specific heat along the roerislence 
line. The full circla arc the experimental v a l u s  
C" [201. The bmkcn curve compands lo the 
specific hest of a free Bme system at the aame 
density and temperature. 

It is the purpose of this paper to present an extension to finite temperatures of 
the 4He density functional formalism of [lo] in order to study the T-dependence 
of the liquid-gas interface properties. Any attempt to accurately describe the 'He 
surface properties should start from a proper description of the homogeneus system 
and of the liquid-gas equilibrium as well. The simplest extension to T + 0 of 
the formalism of [lo] is the thermal Hartree approximation. As it will be seen in 
section 2, this approach yields results only in qualitative agreement with experiment. 
?1, describe the liquid-gas equilibrium in a quantitative way, we will go a step further 
and construct a free energy density F ( p ,  T) depending on the particle density p and 
the temperature T. At each value of T, the parameters entering the functional have 
been fitted to reproduce the vapour pressure and liquid density along the liquid-gas 
c o d t e n c e  line, thus introducing a temperature dependence in the coefficients. A 
similar procedure has been used with some success for liquid 3He 114). 

This paper is organized as follows. In section 2 we mnstruct the density functional 
for the bulk and analyze its capability to study the liquid-gas equilibrium. Secion 3 
is devoted to discuss the interface properties at T # 0. 'lb this end, the bulk density 
functional is completed by adding term that account for density inhomogeneities. 
The surface tension and the density profiles are calculated and used to analyze the 
experimental results of [6]. Finally, a short summary is presented in section 4. 

2. Liquid-gas equilibrium 

An appropriate thermodynamic potential to study the behaviour of the system is the 
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free energy density 

= h(P,T)  - T s ( p , T )  (1) 

where h and s are the energy and entropy densities per unit volume respectively. It 
is convenient to write the functional (1) in the following form: 

F(A T )  = f d p ,  T )  + fdp, T )  . (2) 

f&,T) is the free energy density of a non-interacting Bose gas [18] and fJp, T) 
is the contribution due to the interatomic interaction. This quantity can be evaluated 
using an effective interaction in the context of a mean field approach, as for example 
the Hartree method for Bose systems. An especially simple result is obtained using a 
local zero range interaction. In this case f, is 7'-independent. In particular, the use 
of the local S!qmne-type interaction proposed in [lo] at T = 0, yields the following 
expression for f,: 

(3) f& T )  = $p2 + i c p  2 + 7 .  

In this model, the first term originates from an aaractive two-body contact force, 
while the second term comes from a repulsive density-dependent interaction, such 
a dependence being characterized by the parameter y. At T = 0,  there is no 
contribution from f&, T) and the free energy density reduces to f,. The parameters 
b, c and y have been tixed so as to reproduce, at saturation, the experimental density 
(p,  = 0.02184 part A-3), binding energy (e, = -7.17 K) and incompressibility 
(n = 0.597 K A-3) defined as 

n=.($) T 
(4) 

where p is the pressure. The fit of these experimental quantities yields b = 
-890.215 K A3, c = 1.0960 x lo' K (A3)'+.1 and y = 2.813. The isotherm 
at T = 0 is shown in figure 1 together with the experimental points. One can see 
that the agreement is satisfactory up to pressures close to the solidification pressure. 

Although the expression for f c ( p , T )  at T # 0 B given in textbooks [18] we 
include here a brief summary of its derivation to illustrate the strategy of the method. 
At each T,  we define pe as 

where 

The value of hz/m for a 4He atom is 12.119 K Az and q is the degeneracy pa- 
rameter. For a free Bose gas, q = p / T ,  where p is the chemical potential, and 
q = ( p  - a f , / B p ) / T  if the particles are submitted to a single-particle (SP) mean 
field a f,/ap. 
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p c  is the maximum density which, in this mean field approximation, the Bose 
system can ammodate in non zero momentum SP states. For p > pe, a Bose- 
Einstein condensation takes place and a fraction of ( p  - p , ) / p  particles occupies 
the zero momentum state. This o m r s  when q = 0, and equation ( 5 )  defines the 
so-called lambda l i e  in the p - T plane. This line intersects the liquid branch of the 
liquid-gas equilibrium diagram at a point called the lambda point which corresponds 
to a temperature TA. For the above parameterization, TA = 3.2 K The lambda 
point manifests itself as a discontinuity in the Tderivative of the speci6c heat along 
the liquid-gas coexistence line, see the broken curve in figure 2. We shall come back 
to this point later on. 

To find 17 for p < pe, it is necessaly to solve the following implicit equation: 

For p > p e ,  the degeneracy parameter is zero. Once 17 is known, it is straightfomrd 
to calculate the energy and entropy densities: 

and 

5 h2 ~ ( p  T) 
3 2 m  T sc(p ,T)  = ---- 7 P  

where 

(9)  

For p > p e ,  the previous expressions are calculated at the value 1) = 0. The 
remaining (p  - p, ) /p ,  Le. the fraction of particles with zero momentum, does not 
contribute to h, nor to s,. 

Once the functional (1) is defined, a complete thermodynamical description of 
the system can be achieved. In particular, the chemical potential and the pressure 
are given by 

and 

(12) P(P>T)=P.~(P ,T)+ ib2+ $ $ ~ + Y ) P  2f-r. 

The calculated isotherms for T = 0,3,5 and 7.4 K (critical isotherm of this 
model) are presented in figure 3, showing how the stability condition 
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is violated over a wide range of densities and temperatures, thus indicating that the 
system has to split in two phases, a dense one (liquid L) and a dilute one (gas G). 
At a given T, these phases can be determined by sohring the equilibrium conditions: 

This model leads only to a qualitative description of the pbase separation. In partio 
ular, it yields a critical temperature and pressure. of 7.4 K and 4.8 atm respectively, 
to be compared with the experimental values T, = 5.20 K and P, = 2.24 atm. 
Recently, a mean field calculation [19] camed out using the results of a path in- 
tegral Monte Carlo calculation for hard spheres at temperatures above TA, yields 
T' = 6.8 K and P, = 4.9 atm, which are similar to the results we have obtained. 

?b improve on the thermodynamical description of the 4He liquid-gas system, 
we take a more phenomenological point of view and make the parameters b and c 
Tdependent by imposing that at a given temperature, the pressure and the liquid 
density obtained by sohing (14) be the experimental ones [Z0,21]. The exponent y 
has been kept T-independent This is the procedure we followed in 1141 for liquid 
3He. The fit has been camed out from T = 0.5 K to 5 K with a T-step of 0.05 K. 
The critical region above 5 K has been left out of the fit because it is beyond the 
reach of a mean field description The region below 0.5 K has not been considered, 
because the 4He vapour is so rare that it would not affect in any appreciable amount 
the properties of the liquid and its surface. Other methods that put the emphasis in 
the liquid phase alone are better suited to study the Tdependence of the surface 
properties in this regime [ 17,22, U]. 

The T-dependent functional has to be modified to eliminate the unphysical peak 
in the spec& heat coming from the Bose expression for fi( p, T), which shows up 
near 3.2 K (small dotted peak in figure 2). This peak is not eliminated by the T-  
dependence of the b- and c-coefficients. TO wash it out, we have further modzed the 
functional, using above T = 2.8 K the classical free gas instead of the Bose expression 
for f&,T). This matching temperature can be arbitrarily chosen between TA and 
the spurious peak at = 3.2 K without introducing any appreciable change in the 
results. From this point on, all the results we shall discuss have been obtained with 
this modified free energy functional. 

Figure 4 shows the coexistence curve. The full circles correspond to the experi- 
mental data [20,21] and the full curve to our calculation. The extrapolation of the 
calculated (up to 5 K) coexistence curve gives a critical temperature (T,) of 5.4 K 
whilst the experimental T, is 5.20 K. Due to the fit procedure, the experimental 
thermal expansion coefficient of the liquid 

calculated along the coexistence curve is well reproduced. Notice that a is a 
monotonously increasing function of T above TA. It has a discontinuity at TA, 
becoming negative below TA and again positive below 1.2 K. In this last region, it 
is so small that it is difficult to measure 1201. All these features are present in the 
coexistence curve. The T-dependence of the coefficients b and c gives an explicit 
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T(K)  

Q@m 3. 'He isotherms at differcnl rcmpcralurrr. 
'Ibc cc&cienu b and e of UlC functional .IC T- 
independent. 

P C r e  4. 'He liquic!-ps mxxisicncc l int  The full 
circlca ars lhe apcrimentsl values from [Za]. ?be 
COeEicimU b and c are Tdqcndent (rce the tal 
for furlhcr aplanation). 

contribution to quantities &e the entropy: 

and specific heat, 

which is calculated along the coexistence line as indicated by the subscript pL( 7') in 
(17). It is given by: 

where c&, 7') corresponds to the non-interacting gas contribution. c( p,  7') (con- 
tinuous h e )  is shown in figure 2 together with the experimental results (full cir- 
cles) [20,21]. From figure 2 one can see that the 7'-dependence of the coefficients is 
CN&I to reproduce the experimental behaviour of c( p,  T) around TA. 

Notice that requiring the functional to reproduce the experimental vapour pres- 
sure and the liquid density along the coexistence line implies that the free energy, 
which can be. expressed as 

f(P,T) = - P ( P , T )  + P ( P , T ) P  (19) 

is also correctly evaluated on the mxistence. line when the density of the coexisting 
gas is low enough to behave as a free classical gas and therefore p G ( p , T )  (thus 
f l L ( p ,  T)) are correctly given by (14). 

Figure 5 shows the T = 2,3,4 and 5 K isotherms as well as the calculated 
(full curve) and experimental (full circles) coexistence curve in the pressure-density 
plane. Notice. that the procedure used to determine b ( T )  and c (T)  consists in 
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P(glcnll1 

P b r e  5. *He isotherms a1 different temperatures. 
The coexistence line in the p"density plane is 
am displayed. The full circles are lbe experimental 
values Irom p0.211. 

p(gIcml1 

F b r r  6. Liqigilid 'He isotherms a1 different lm- 
pemtures a h =  TA. The experimental pint s  (full 
circles) are from [XI. 

fitting one point along each isotherm, Le., the crossing point of each isotherm with 
the liquid branch of the liquid-gas coexistence curve. The discrepancies between 
the experimental and calculated coexisting vapour densities are an indication of the 
limitations of the functional. Extrapolating above 5 K the coexistence curve we obtain 
a critical pressure P. = 2.6 atm whilst the experimental P, is 2.24 atm. 

Figure 6 displays several isotherms corresponding to the liquid phase for temper- 
atures higher than TA. The do$ are the experimental results [21]. The agreement 
between the experimental and the calculated isotherms is reasonably good, except for 
temperatures close to T,. 

3. Iiquid-gas interface 

3.1. The surface tension 

It has been shown in the previous section that the free energy density F ( p , T ) ,  
equation (1) is able to describe fairly well the bulk properties of the 4He liquid-gas 
equilibrium. 'lb study the liquid-gas interface, which is the aim of the present work, 
F ( p , T )  has to be completed by adding terms which " m t  for density inhomo- 
geneities. The simplest ansatz is to write the free energy per unit volume as: 

where F(p ,T)  is the hulk part already discussed, the p-term is the correction to 
the kinetic energy density, and the &term is the surface correction to the interaction 
energy, equation (2). Zero temperature functionals similar to (20) have been applied 
to the study of the surface properties of 4He and 3He liquids [lo] and droplets [24] 
at T = 0 K. The extension to finite temperature has been recently carried out for 
liquid 3He [14]. 

We have taken for p the value 1/4(ti2/2m) as in [lo]. The parameter 6, which 
is taken T-independent, will be chosen so as to reproduce the 4He surface tension 
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U at T = 0. After fixing E ,  u(T)  is calculated and compared with the experimental 
values. 

Tbe 3He surface tension and the corresponding density profile pertaining to fun& 
tionals of the kind given by (20) have been derived in detail in 1141. Sincc for ‘He 
there are no signhicant changes in the derivation, we will just present here the final 
expressions. We consider a plane interface separating the liquid and gas phases and 
take the axis perpendicular to it as the z axis. When z goes to -CO, p tends to the 
liquid density ph that at a given T is in thermodynamical equilibrium with a gas of 
density pout, which is the l i t  of p when z goes to +m. The densities pi, and pout 
are the solutions of (14). 

From the Euler-Lagrange equation 

and after following the procedure indicated in [14], one obtains an equation for the 
density profile: 

where A F and A p  are given by 

Similar definitions hold for AFOut and Apout, and either the ‘in’ or the ‘out’ ex- 
pressions can be used in (22). This equation can be integrated numerically, yielding 
~ ( p )  rather than p(z).  However, the explicit knowledge of p ( r )  is not necessary to 
determine u(T)  which can be calculated with the following expression [14]: 

112 4T) = 2 L [ F ( p )  - F(p,,J - AP - P A I  112 ( E + E )  dp.  (24) 

(378.3 mdyncm-’) was used, which implies a larger (-coefficient, E = 2383 K 6 5  . 

We want to emphasize that only bulk quantities are needed to determine U( T), 
p is just the integration variable. When T = 0, pour = 0 and p becomes the energy 
per particle at saturation. 

’bmking the experimental value [4] Q = 354.4 mdyncm-’ at T = 0 K, we fix 
the parameter = 2047.9 K As. In [IO], the experimental value of reference 21 

The T-evolution of the surface tension is s h o w  in figure 7. One can see that 
the overall agreement between theory (full curve) and experiment (full circles) is 
rather good. Although the proposed approach is too phenomenological to dis- 
cuss fine details or to disentangle the contributions of the different types of ex- 
citations to the surface energy, we would like to mention that the calculated de- 
crease of the surface tension at small temperature (from 0 to l K) is well fitted 
by A u ( T )  = -12.35 T2.33 mdyncm-I while the experimental results adjust to 
Au(T) = -7.43 Ta.3s mdyncm-*. On the other hand, the ripplon contribution 1221 
has been estimated to be Au(T) = -6.50 PI3 mdyncm-*. 
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3.2. Surface thickness and den@ profie 

At the liquid-vapour interface, the density p ( z )  smoothly changes from the liquid to 
the vapour density over a distance of a few hgstdms. The surface thickness t gives 
a quantitative idea of the width of the region where the change occurs. It is defined 
as t zi, - zouI. where rim is the point at which p = pout + 0.9(pin - pour) and zouI 
is the point at which p = pouI + O.l(p, - p,,,), pin and pout being the densities of 
bulk liquid and vapour in equilibrium. 

I I 

Fkuurc 7. Surface lension as a function of T. The 
full ckcles are the experimental values from [4]. 

F@re 8. Dewily pm~iles at different temperauups. 
me full circles are the result of a 61 of the varia- 
tional densities 10 generalized Fermi functio- 
equation (2.5). 

Figure 8 shows the T = 0 , 2 , 3  and 4 K density profiles we have obtained inte- 
grating equation (22). Each surface has been located around a common z = 0 point 
by imposing that p ( 0 )  = pout + (pin - pouc)/2. These profiles can be fitted very well 
by generalized Fermi functions of the kind: 

The full circles along the density profiles in figure 8 are the results obtained using 
the parametrized densities (25). The surface thickness corresponding to a density of 
the type given by (25) is readily obtained: 

1 0 ’ f Y  - 1 
(10/9)’’Y - 1 

t = 6ln 

At low temperatures, the density profiles are very asymmetric around the inflexion 
point of p ( z ) .  This is reflected in the value of U (Y = 4.8 at T = 0 K). When T 
increases, the density profile becomes more symmetric (U = 1.8 at T = 3 K). 

From the fuily variational density profile we get t = 6.45 A at T = 0 K. The 
difference with the value reported in [IO] (t = 7 A) is due to the different values 
we have used for o(0). The incorporation of finite-range effects in the density- 
functional points to smaller values of t (5.7 8, in reference [II]), Recent Monte 
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Carlo and Green's Function Monte Carlo calculations [9] camed out for the Azu 
potential also yield a smaller value (t % 5 8,). Other calculations give values of t 
from 2 to 11.5 8, (see [6] and references therein). The result for t (T )  obtained from 
the variational densities is shown in figure 9. It can be seen that t changes very little 
up to 1 K, and around 0.5 A from 1 to 1.5 K Above this temperature, 1 increases 
rapidly with T. 

The densily profite has not been experimentally determined so far. In [6j, a 
characteristic length of the liquid-gas interface was deduced from ellipsometric mea- 
surements in the temperature range of 1.4 to 21 K This length is defined in the 
following way 16,251: 

d z  +- (nZ - nZut)(n2 - n i )  
5 = J  -CO nz (27) 

where n( z )  is the refractive index at the position Y and the integration extends from 
bulk liquid ( n  = nk) up through the transition layer into the vapour (n = no",). 
In a e  next step, the Lorena-Lorentz relation between the square of the refractive 
index, the density and the polarizability [26] was used [6] in conjunction with a simple 
Fermi function ((U), with U = 1) to get a relationship between the thickness, the 
refractive indexes of the liquid and the gas, and the measured quantity 5. The 
polarizability was considered mnstant in the whole density range, which is justsed by 
some experimental evidence 1261. The average thickness determined in reference [6] 
for T from 1.4 to 2.1 K is 9.36 k Extrapolating his results, Osborne [6] predicts 
t = 8.5 8, at T = 0 K, thus indicating that the surface thickness has increased 1-2 A 
in this temperature interval. 

Consequently, the only indirect experimental determination of t camed out so 
far seems to point towards a value of the surface thickness 2-3 A larger than the 
most recent calculations. Since in the analysis of the ellipsometric measurements of 
reference [6] it was used a symmetric (U = 1) density profile, it is worth checking 
if it has some inliuence on the extracted value of t (our calculations and those of 
reference [lo] yield very asymmetric density profiles). We have versed that this is not 
the case. Indeed, if instead of the T = 0 best fit parameters U = 4.8, 6 = 1.97 8, 
which yield t = 6.45 A we use U = 1 and the readjusted value 6 = 1.47 A (which 
also yields a rather good fit in the surface region) we get t = 6.44 A 

Using (27), we have calculated the quantity 5 as a function of the temperature 
for different types of profiles. The results are shown in figure 10 in the range 
of temperatures for which ni. and noyt are experimentally known [26]. The full 
curve corresponds to the calculation with the variational profiles obtained from (22); 
the broken and chain curves correspond to the fitted profiles with U = 1 and 2, 
respectively (equation (27) can be analytically integrated for any U integer). 

The non-monotonic behaviour of C(T) can be easily understood as follow. %king 
U = 1 in (U), we get from (26) and (27) (see also reference [6]): 

t (T)  =46(T)ln3 

((T) = -6(T) [(n:., - n%)ln OYf . " 1  nin 

The function within brackets is always positive, going to zero when T approaches T,. 
At moderated temperatures, the T-dependence of C( T) is basically determined by 
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-0.50 

- -0.54 
5 

.4 

-0.58 

2 2.5 3 35 4 

T(K)  T (K) 
F3gun 9. Surface thickness t as a function of T. Figun 10. Temperature dependence of the length 

C (in picometm) calculated with different profiles. 
Full cum,  from the solution of equation (22); btu- 
ken cum,  from (U) with Y = 1, chain w e ,  with 
Y = 2. 

6(T) and thus C(T) decreases. At higher temperatures, the second factor in (28) 
takes over 6(T) causing C(T) to increase and eventually become zero at T,. 

The average absolute values of the measured C (C = -0.7 pm in the temperature 
interval 1.4 K < T < 2 K) are larger than the calculated ones. Due to the large 
scale used in figure 10, they are located out of the frame. One can see from figure 
10 that the differences between the values of C obtained from the ditferent density 
profiles are not significant, showing that C cannot give any reliable information about 
the surface skewness. 

4. Summary 

We have studied the thermal propelties of the 4He free surface. lb this end, we have 
constructed a phenomenological free energy density able to give a fair acwunt of the 
bulk properties of the 4He liquid-gas equilibrium, especially of the surface tension. 

The T-dependence of the density profiles, and in particular of the surface thick- 
ness 1, has been predicted and discussed. At zero temperature, our calculation yields 
a thickness that agrees rather well with other microscopic and finite-range density 
functional approaches [9-11]. Compared with the only indirect experimental deter- 
mination [6] of t, the more recent theoretical calculations yield values 2-3 A smaller. 
However, as it is mentioned in [6], the experimental accuracy has to he improved 
before drawing any definitive conclusion. 

Our calculations indicate that a sizeable change in the surface thickness occurs 
only for temperatures above T = 1.5 K In this sense, it is highly desirable to have 
experimental measurements of 1 above TA, for which our calculations may give a first 
estimate. 

Finally, we believe that the present density functional method, as well as that of 
reference [14], can provide a convenient starting point to study the properties of He 
droplets at finite T. Calculations in this direction are presently in progress. 
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