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Abstract. A density functional approach is proposed to study the *He liquid—gas interface.
The free encrgy density, which depends on the particle density and temperature, has
been adjusted to reproduce the liquid density and the vapour pressure along the liquid—
gas coexistence line, as well as the zero-temperature surface tension. After achieving a
fairly good description of the phase transition, the calculated surface lension agrees well
with the experimental results, The calculated density profile is used to discuss a recent
experimental determination of the surface thickness.

1. Introduction

The surface tension (o) of liquid *He was first measured in 1925 [1]. However, there
still are many open theoretical and experimental problems in the description of the
liquid—gas interface [2]. It is only recently that the surface tension of liquid *He has
been systematically measured from the critical temperature T, down to a few tenths
of kelvin {3,4]. Apart from the surface tension, the experimental information on the
liquid—gas interface is very scarce; only a few indirect determinations of the surface
thickness () are available (5,6]. The analysis of the most recent experiments, which
are based on ellipsometric measurements, [6] requires the knowledge of the density
profile p{z). As there is not enough experimental information on p( z), it is necessary
to guess a density profile, which in [6] was chosen to be a simple Fermi function.

At zero temperature (T7), there exist in the recent literature different theoretical
methods to study the free surface of liquid “He. Basically, they fall into one of
two types, namely microscopic [7-9] and phenomenological {10,11] models. In the
first type, the extensions of the variational Monte Carlo and Green’s function Monte
Carlo methods to inhomogeneous systems [9] predict a surface tension in very good
agreement with the experimental results. The second type of calculations is based
mainly on density functional theories which have received a renewed interest in their
application to quantum liquids [10-14] and will constitute the framework of the
present investigation.

The situation at finite temperature is more complicated and to our knowledge
there is no microscopic calculation of the liquid-gas interface. In fact, the very few
microscopic attempts to describe He at T 3 0 have been concentrated in the bulk
properties [15,16]. It is precisely in these situations where a more phenomenological
approach, such as a density functional theory, can be useful to analyze the experi-
mental results.
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Recently, simple energy density functionals have been used with some success to
study the 3He liquid—gas interface at non-zero temperatures [14,17]. These function-
als were largely inspired on the density functional proposed in [10] to study liquid
helivm at T = 0. In this reference, Stringari and Treiner achieved a good description
of the T = 0 K liquid equation of state and of the properties of the free surface, once
the few parameters entering the functional definition had been chosen to reproduce
some relevant, experimentally Xnown quantities.
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Figure 1. *He T = 0 K isotherm. The full circles  Figure 2. Liquid specific heat along the coexistence
are the experimental values from {20]. line. The full circles are the cxperimental values

from [20]. The broken curve corresponds io the
specific heat of a free Bose system at the same
density and temperature.

It is the purpose of this paper to present an extension to finite temperatures of
the *He density functional formalism of [10] in order to study the T-dependence
of the liquid-gas interface properties. Any attempt to accurately describe the *He
surface properties should start from a proper description of the homogeneus system
and of the liquid—gas equilibrium as well. The simplest extension to T # 0 of
the formalism of [10] is the thermal Hartree approximation. As it will be seen in
section 2, this approach yields results only in qualitative agreement with experiment.
To describe the liquid—gas equilibrium in a quantitative way, we will go a step further
and construct a free energy density F'(p, T') depending on the particle density p and
the temperature T'. At each value of T, the parameters entering the functional have
been fitted to reproduce the vapour pressure and liquid density along the liquid-gas
coexistence line, thus introducing a temperature dependence in the coefficients. A
similar procedure has been used with some success for liquid 3He [14].

This paper is organized as follows. In section 2 we construct the density functional
for the bulk and analyze its capability to study the liquid—gas equilibrium. Secion 3
is devoted to discuss the interface properties at T # 0. TO this end, the bulk density
functional is completed by adding terms that account for density inhomogeneities.
The surface tension and the density profiles are calculated and used to analyze the
experimental results of [6]. Finally, a short summary is presented in section 4.

2. Liquid-gas equilibrium

An appropriate thermodynamic potential to study the behaviour of the system is the
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free energy density
F(p,T) = h(p,T) - Ts(p, T) M

where h and s are the energy and eatropy densities per unit volume respectively. It
is convenient to write the functional (1) in the following form:

F(p,T) = fu(p,T) + f(p,T). @

fui(p, T) is the free energy density of a non-interacting Bose gas [18] and f,(p, T)
is the contribution due to the interatomic interaction. This quantity can be evaluated
using an effective interaction in the context of a mean field approach, as for example
the Hartree method for Bose systems. An especially simple result is obtained using a
local zero range interaction. In this case f, is T-independent. In particular, the use
of the local Skyrme-type interaction proposed in {10] at T = 0, yields the following
expression for f,:

F(pT) = 1bp? + Lep®t7. (3)

In this model, the first term originates from an attractive two-body contact force,
while the second term comes from a repulsive density-dependent interaction, such
a dependence being characterized by the parameter y. At T = 0, there is no
contribution from f,;( o, T') and the free energy density reduces to f,. The parameters
b, ¢ and + have been fixed s0 as to reproduce, at saturation, the experimental density
(pp = 0.02184 part A-2), binding energy (e, = —7.17 K) and incompressibility
(= = 0.597 K A~%) defined as

dp

rEe (310)1* @
where p is the pressure. The fit of these experimental quantities yields b =
-890.215 K A3, ¢ = 1.0960 x 107 K (A®Y'*Y and v = 2.813. The isotherm
at T = 0 is shown in figure 1 together with the experimental points. One can see
that the agreement is satisfactory up to pressures close to the solidification pressure,
Ailthough the expression for f;(p,T) at T # 0 is given in textbooks [18] we
include here a brief summary of its derivation to illustrate the strategy of the method.

At each T, we define p, as

1 (2mT\*?
pulT) = 553 (255) " Cual©) )
where
o m]‘l
C',,(n)—/o dz——— - (6

The value of A?/m for a *He atom is 12.119 K A? and 7 is the degeneracy pa-
rameter. For a free Bose gas, n = u/T, where p is the chemical potential, and
n = (p — 8f,/8p)/T if the particles are submitted to a single-particle (SP) mean
field 85,/8p.
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p. is the maximum density which, in this mean field approximation, the Bose
system can accomodate in non zero momentum SP states. For p > p,, a Bose-
Einstein condensation takes place and a fraction of (p — p,)/p particles occupies
the zero momentum state. This occurs when = 0, and equation (5) defines the
so-called lambda line in the p— T plane. This line intersects the liquid braach of the
liquid-gas equilibrium diagram at a point calied the lambda point which corresponds
to a temperature T,. For the above parameterization, T), = 3.2 K. The lambda
point manifests itself as a discontinuity in the T-derivative of the specific heat along
the liquid—gas coexistence line, see the broken curve in figure 2. We shall come back
to this point later on.

To find 5 for p < p,, it is necessary to solve the following implicit equation:

m 372
o= (L) Cupalm)- ™

T 2x2

For p > p,, the degeneracy parameter is zero. Once n is known, it is straightforward
to calculate the energy and entropy densities:

ﬁz
h'ni(p: T) = E;;T(Pa T) (8)
and
5 A? ,T
s5(p, T) = E%T(gﬂ—) - np 9)
where
1 2mT 5/2
e T) =5 (T) Cy/a(m) . (10)

For p > p,, the previous expressions are calculated at the value n = 0. The
remaining (p — p.)}/p, ie. the fraction of particles with zero momentum, does not
contribute to h; nor to s,;.

Once the functional (1) is defined, a complete thermodynamical description of
the system can be achieved. In particular, the chemical potential and the pressure
are given by

_ 5‘12)
(o, T) = o7+ (25 ] (11)
and
p(2,T) = py(p, T) + $bp° + Le(1 + 4)p** . (12)

The calculated isotherms for T = 0,3,5 and 7.4 K (critical isotherm of this
model} are presented in figure 3, showing how the stability condition

(g—g)T >0 (13)
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is violated over a wide range of densities and temperatures, thus indicating that the
system has to split in two phases, a dense one (liquid L) and a dilute one (gas G).
At a given T, these phases can be determined by solving the equilibrium conditions:

FL(pL$ T)= I-‘G(PG& T) (14)

pripL,T) = pG(PGs T).

This model leads only to a qualitative description of the pbase separation. In partic-
ular, it yields a critical temperature and pressure of 7.4 K and 4.8 atm respectively,
to be compared with the experimental values T, = 5.20 K and P, = 2.24 atm.
Recently, a mean field calculation [19] carried out using the results of a path in-
tegral Monte Carlo calculation for hard spheres at temperatures above T, yields
T, =6.8 Kand P, = 4.9 atm, which are similar to the results we have obtained.

To improve on the thermodynamical description of the *He liquid—gas system,
we take a more phenomenological point of view and make the parameters b and ¢
T-dependent by imposing that at a given temperature, the pressure and the liquid
density obtained by solving (14) be the experimental ones [20,21]). The exponent ~y
has been kept T-independent. This is the procedure we followed in [14] for liquid
3He. The fit has been carried out from T = 0.5 K to 5 K with a T-step of 0.05 K
The critical region above 5 K has been left out of the fit because it is beyond the
reach of a mean field description. The region below 0.5 K has not been considered,
because the *He vapour is so rare that it would not affect in any appreciable amount
the properties of the liquid and its surface, Other methods that put the emphasis in
the liquid phase alone are better suited to study the T-dependence of the surface
properties in this regime [17,22,23].

The T-dependent functional has to be modified to eliminate the unphysical peak
in the specific heat coming from the Bose expression for f;(p, T), which shows up
near 3.2 K (small dotted peak in figure 2). This peak is not eliminated by the T-
dependence of the b- and c-coefficients. To wash it out, we have further modified the
functional, using above T" = 2.8 K the classical free gas instead of the Bose expression
for fy;(p,T). This matching temperature can be arbitrarily chosen between T, and
the spurious peak at ~ 3.2 K without introducing any appreciable change in the
results. From this point on, all the results we shall discuss have been obtained with
this modified free energy functional.

Figure 4 shows the coexistence curve. The full circles correspond to the experi-
mental data [20,21] and the full curve to our calculation. The extrapolation of the
calculated (up to 5 X) coexistence curve pives a critical temperature (1) of 54 K
whilst the experimental T, is 5.20 K. Due to the fit procedure, the experimental
thermal expansion coefficient of the liquid

=4 (2)

calculated along the coexistence curve is well reproduced. Notice that o is a
monotonously increasing function of T above T,. It has a discontinuity at T},
becoming negative below T, and again positive below 1.2 K. In this last region, it
is so small that it is difficult to measure [20]. All these features are present in the
coexistence curve. The T-dependence of the coefficients b and ¢ gives an explicit
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Figure 3. *He isotherms at different temperatures.  Figare 4. *He liquid—gas coexistence line. The full

The cocficients & and ¢ of the functional are T-  circles are the experimental values from [20]. The

independent. cocflicients b and ¢ are T-dependent {gee the text
for further explanation).

contribution to quantities like the entropy:

(o T)Z suler T 5,0, T) = se, ) - (PR8I} qae)

ard specific heat,

8s(p,T)

e(p,T)=T (_ (17)
’ arT (T

which is calculated along the coexistence line as indicated by the subscript p; (T) in

(17). 1t is given by:

oo, T) = eu(p, ) + 7 (2242 10) . (18)
PL

where c,;(p, T’} corresponds to the non-interacting gas coatribution. c(p,T) (con-
tinuous line) is shown in figure 2 together with the experimental results (full cit-
cles) [20,21]. From figure 2 one can see that the T-dependence of the coefficients is
crucial to reproduce the experimental behaviour of e(p, T') around T;.

Notice that requiring the functional to reproduce the experimental vapour pres-
sure and the liquid density along the coexistence line implies that the free energy,
which can be expressed as

£(p, T) = —p(p. T) + u(p, T)p (19)

is also correctly evaluated on the coexistence line when the density of the coexisting
gas is Jow enough to behave as a free classical gas and therefore pg(p,T) (thus
u1.(p, T)) are correctly given by (14),

Figure 5 shows the T = 2,3,4 and 5 K isotherms as well as the calculated
(full curve) and experimental (full circles) coexistence curve in the pressure-density
plane. Notice that the procedure used to determine b(7) and <(T) consists in
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Figure S, He isotherms at different temperatures.  Figare 6. Liguid *He isotherms ai different tem-
The coexistence line in the pressure-density plane is  peratures above T). The experimental points (full
also displayed. The full circles are the experimental  circles) are from f21].

values from [20,21].

fitting one point along each isotherm, ie., the crossing point of ¢ach isotherm with
the liquid branch of the liquid-gas coexistence curve. The discrepancies between
the experimental and calculated coexisting vapour densities are an indication of the
limitations of the functional. Extrapolating above 5 K the coexistence curve we obtain
a critical pressure F, = 2.6 atm whilst the experimental F, is 2.24 atm.

Figure 6 displays several isotherms corresponding to the liquid phase for temper-
atures higher than 7',. The dots are the experimental results [21]. The agreement
between the experimental and the calculated isotherms is reasonably good, except for
temperatures close to T,.

3. Liquid—gas interface

3.1. The surface tension

It has been shown in the previous section that the free energy denmsity F(p,T),
equation (1) is able to describe fairly well the bulk properties of the “He liquid—gas
equilibrium. To study the liquid-pas interface, which is the aim of the present work,
F(p,T) has to be completed by adding terms which account for density inhomo-
geneities. The simplest ansatz is to write the free energy per unit volume as:

‘ 2
£oT) = F(p, T+ L 1 6(9py (20)

where F(p,T) is the bulk part already discussed, the (-term is the correction to
the kinetic energy density, and the £-term is the surface correction to the interaction
energy, equation (2). Zero temperature functionals similar to (20) have been applied
to the study of the surface properties of *He and *He liquids [10] and droplets [24]
at T = 0 K. The extension 1o finite temperature has been recently carried out for
liquid *He [14]

We have taken for G the value 1/4(4%/2m) as in [10]. The parameter £, which
is taken T-independent, will be chosen so as to reproduce the *He surface tension
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o at T = 0. After fixing £, o(T} is calculated and compared with the experimental
values.

The SHe surface tension and the corresponding density profile pertaining to func-
tionals of the kind given by (20) have been derived in detail in [14]. Since for ‘He
there are no significant changes in the derivation, we will just present here the final
expressions. We consider a plane interface separating the liquid and gas phases and
take the axis perpendicular to it as the z axis. When 2z goes to —oo, p tends to the
liquid density p;, that at a given T is in thermodynamical equilibrium with a gas of
density p,,;, Which is the limit of p when 2 goes to -co. The densities p,, and p,,,
are the solutions of (14).

From the Euler-Lagrange equation

=2y .oy (21)

and after following the procedure indicated in [14], one obtains an equation for the
density profile:

, AF - pAp\'?
#0=-(S75e) @)
where AF and Ap are given by
AF, = F(z) - F(py)
(23)

App = p(2) ~ pin -

Similar definitions hold for AF,, and Ap_,, and either the ‘in’ or the ‘out’ ex-
pressions can be used in (22). This equation can be integrated numerically, yielding
z(p) rather than p{z). However, the explicit knowledge of p(z) is not necessary to
determine o(7") which can be calculated with the following expression [14]:

._ 1/2
o(T) =2 [ 1F(6) - Flow) ~ o~ padP?(2 46) " dp.20

BPout

We want to emphasize that only bulk quantities are needed to determine o(T),
p is just the integration variable. When T = 0, p_,, = 0 and p becomes the energy
per particle at saturation.

Taking the experimental value [4] ¢ = 354.4 mdynem™! at T = 0 K, we fix
the parameter £ = 2047.9 K A%, In [10], the experimental value of reference [2]
(378.3 mdyncm~') was used, which implies a larger £-coefficient, £ = 2383 K AS.
The T-evolution of the surface tension is shown in figure 7. One can see that
the overall agreement between theory (full curve) and experiment (full circles) is
rather good. Although the proposed approach is too phenomenological to dis-
cuss fine details or to disentangle the contributions of the different types of ex-
citations to the surface energy, we would like to mention that the calculated de-
crease of the surface tension at small temperature (from 0 to 1 K) is well fitted
by Ao(T) = ~12.35 T2 mdyncm~! while the experimental results adjust to
Ao(T) = —7.43 T?3% mdyncm~*. On the other hand, the ripplon contribution [22]
has been estimated to be Ac(T) = —6.50 T7/3 mdyncm1.
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3.2. Surface thickness and density profile

At the liquid-vapour interface, the density p(2) smoothly changes from the liquid to
the vapour density over a distance of a few &ngstréms. The surface thickness ¢ gives
a quantitative idea of the width of the region where the change occurs. It is defined
as t = 2y, — 2oy, Where z;, is the point at which p = p_ + 0.9(pj ~ Pou) aNA 2oy

is the point at which p = pg,, + 0.1(p; — Pour)s P and p,,, being the densities of
bulk liquid and vapour in equilibrium.

- 2x10°2
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Figure 7. Surface tension as a function of 7. The  Figure 8. Density profiles at different temperatures.
full circles are the experimental values from [4]. The full circles are the result of a fit of the varia-

tional densities lo gencralized Fermi functions—ses
equation (25).

Figure 8 shows the T = 0,2,3 and 4 K density piofiles we have obtained inte-
grating equation (22). Each surface has been located around a common z = 0 point
by imposing that p(0) = p,,, + (piy — Pour) /2. These profiles can be fitted very well
by generalized Fermi functions of the kind:

—_ Pin — Pout
p(z) = Pow T+ []_ +exp((2’ - zg)/é)}u . (25)

The full circles along the density profiles in figure 8 are the results obtained using
the parametrized densities (25). The surface thickness corresponding to a density of
the type given by (25) is readily obtained:

101/7 — 1

At low temperatures, the density profiles are very asymmetric around the inflexion
point of p(z). This is reflected in the value of v (v = 4.8 at T = 0 K). When T
increases, the density profile becomes more symmetric (v = 1.8 at T = 3 K},

From the fully variational density profile we get t = 6.45 A at T = 0 K. The
difference with the value reported in [10] (¢ = 7 A) is due to the different values
we have used for o(0). The incorporation of finite-range effects in the density-
functional points to smaller values of ¢ (5.7 A in reference [11]). Recent Monte
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Carlo and Green’s Function Monte Carlo calculations [$] carried out for the Aziz
potential also yield a smaller value (¢t =~ 5 A). Other calculations give values of t
from 2 to 11.5 A (see [6] and references therein). The result for {(7") obtained from
the variational densities is shown in figure 9. It can be seen that ¢ changes very little
up to 1 K, and around 0.5 A from 1 to 1.5 K. Above this temperature, ¢ increases
rapidly with T

The density profile has not been experimentally determined so far. In [6], a
characteristic length of the liquid—gas interface was deduced from ellipsometric mea-
surements in the temperature range of 1.4 to 2.1 K. This length is defined in the
following way [6,25]:

oo (n? = ndy)(n®— nd)

3
e n

¢ =

dz @7

where n(z) is the refractive index at the position » and the integration extends from
bulk liquid (n = n;,) up through the transition layer into the vapour (n = ng,).
In the next step, the Lorentz-Lorentz relation between the square of the refractive
index, the density and the polarizability [26] was used [6] in conjunction with a simple
Fermi function ((25), with v = 1) to get a relationship between the thickness, the
refractive indexes of the liquid and the gas, and the measured quantity {. The
polarizability was considered constant in the whole density range, which is justified by
some experimental evidence [26]. The average thickness determined in reference [6]
for T from 1.4 to 2.1 K is 936 A. Extrapolating his results, Osborne [6] predicts
t = 8.5 A at T = 0 K, thus indicating that the surface thickness has increased 1-2 A
in this temperature interval.

Consequently, the only indirect experimental determination of ¢ carried out so
far seems to point towards a value of the surface thickness 2-3 A larger than the
most recent calculations. Since in the analysis of the ellipsometric measurements of
reference [6] it was used a symmetric (v = 1) density profile, it is worth checking
if it has some influence on the extracted value of ¢ (our calculations and those of
reference [10) yield very asymmetric density profiles). We have verified that this is not
the case. Indeed, if instead of the T = 0 best fit parameters v = 4.8, 6 = 1.97 A
which yield ¢ = 6.45 A we use v = 1 and the readjusted value § = 1.47 A (which
also yields a rather good fit in the surface region) we get t = 6.44 A.

Using (27), we have calculated the quantity { as a function of the temperature
for different types of profiles. The results are shown in figure 10 in the range
of temperatures for which n, and n,, are experimentally known [26]. The full
curve corresponds to the calculation with the variational profiles obtained from (22);
the broken and chain curves correspond to the fitted profiles with » = 1 and 2,
respectively (equation (27) can be analytically integrated for any v integer).

The non-menotonic behaviour of (77} can be easily understood as follows, Taking
v = 1 in (25), we get from (26) and (27) (see also reference {6]):

#T) =46(T)1n 3

C(T) = ~5(7) (i~ nfim 2] 08)

The function within brackets is always positive, going to zero when T' approaches T,.
At moderated temperatures, the T-dependence of {(T'} is basically determined by
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Figure 9. Surface thickness ¢ as a function of T\ Figure 10. Temperature dependence of the length
¢ (in picometres) calculated with different profiles.

Full curve, from the solution of equation (22} bro-
ken curve, from (25) with = 1, chain curve, with
v=2.

&(T) and thus {(T) decreases. At higher temperatures, the second factor in (28)
takes over §(T") causing {(T) to increase and eventually become zero at T

The average absolute values of the measured ¢ ({ ~ —0.7 pm in the temperature
interval 1.4 K < T <« 2 K) are larger than the calculated ones. Due to the large
scale used in figure 10, they are located out of the frame. One can see from figure
10 that the differences between the values of { obtained from the different density
profiles are not significant, showing that ¢ cannot give any reliable information about
the surface skewness.

4. Summary

We have studied the thermal properties of the *He free surface. To this end, we have
constructed a phenomenological free energy density able to give a fair account of the
bulk properties of the #He liquid—gas equilibrium, especially of the surface tension.

The T-dependence of the density profiles, and in particular of the surface thick-
ness t, has been predicted and discussed. At zero temperature, our calculation yields
a thickness that agrees rather well with other microscopic and finite-range density
functional approaches [3-11]. Compared with the only indirect experimental deter-
mination [6] of ¢, the more recent theoretical calculations yield values 2-3 A smaller.
However, as it is mentioned in [6], the experimental accuracy has to be improved
before drawing any definitive conclusion.

Our calculations indicate that a sizeable change in the surface thickness occurs
only for temperatures above T =z 1.5 K. In this sense, it is highly desirable to have
experimental measurements of ¢ above T, for which our calculations may give a first
estimate.

Finally, we believe that the present density functional method, as well as that of
reference [14], can provide a convenient starting point to study the properties of He
droplets at finite T, Calculations in this direction are presently in progress.
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